首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2871篇
  免费   483篇
  国内免费   322篇
化学   2360篇
晶体学   59篇
力学   102篇
综合类   22篇
数学   8篇
物理学   1125篇
  2024年   5篇
  2023年   23篇
  2022年   48篇
  2021年   73篇
  2020年   118篇
  2019年   85篇
  2018年   85篇
  2017年   105篇
  2016年   122篇
  2015年   121篇
  2014年   153篇
  2013年   306篇
  2012年   165篇
  2011年   185篇
  2010年   142篇
  2009年   186篇
  2008年   190篇
  2007年   178篇
  2006年   222篇
  2005年   157篇
  2004年   160篇
  2003年   146篇
  2002年   108篇
  2001年   74篇
  2000年   83篇
  1999年   77篇
  1998年   60篇
  1997年   48篇
  1996年   54篇
  1995年   47篇
  1994年   20篇
  1993年   23篇
  1992年   34篇
  1991年   11篇
  1990年   11篇
  1989年   5篇
  1988年   10篇
  1987年   9篇
  1986年   5篇
  1985年   7篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1971年   1篇
排序方式: 共有3676条查询结果,搜索用时 15 毫秒
1.
Yukai Zhuang 《中国物理 B》2022,31(8):89101-089101
Iron oxides are widely found as ores in Earth's crust and are also important constituents of its interiors. Their polymorphism, composition changes, and electronic structures play essential roles in controlling the structure and geodynamic properties of the solid Earth. While all-natural occurring iron oxides are semiconductors or insulators at ambient pressure, they start to metalize under pressure. Here in this work, we review the electronic conductivity and metallization of iron oxides under high-pressure conditions found in Earth's lower mantle. We summarize that the metallization of iron oxides is generally controlled by the pressure-induced bandgap closure near the Fermi level. After metallization, they possess much higher electrical and thermal conductivity, which will facilitate the thermal convection, support a more stable and thicker D$\prime\prime$ layer, and formulate Earth's magnetic field, all of which will constrain the large-scale dynamos of the mantle and core.  相似文献   
2.
Pd-based catalysts are the most widely used for CO oxidation because of their outstanding catalytic activity and thermal stability. However, fundamental understanding of the detailed catalytic processes occurring on Pd-based catalysts under realistic conditions is still lacking. In this study, we investigated CO oxidation on metallic Pd clusters supported on Al2O3 and SiO2. High-angle annular dark-field scanning transmission electron microscopy revealed the formation of similar-sized Pd clusters on Al2O3 and SiO2. In contrast, CO chemisorption analysis indicated a gradual change in the dispersion of Pd (from 0.79 to 0.2) on Pd/Al2O3 and a marginal change in the dispersion (from 0.4 to 0.24) on Pd/SiO2 as the Pd loading increased from 0.27 to 5.5 wt %; these changes were attributed to differences in the metal-support interactions. Diffuse reflectance infrared Fourier-transform spectroscopy revealed that fewer a-top CO species were present in Pd supported on Al2O3 than those in Pd supported on SiO2, which is related to the morphological differences in the metallic Pd clusters on these two supports. Despite the different dispersion profiles and surface characteristics of Pd, O2 titration demonstrated that linearly bound CO (with an infrared signal at 2090 cm−1) reacted first with oxygen in the case of CO-saturated Pd on Al2O3 and SiO2, which suggests that a-top CO on the terrace site plays an important role in CO oxidation. The experimental observations were corroborated by periodic density functional calculations, which confirmed that CO oxidation on the (111) terrace sites is most plausible, both kinetically and thermodynamically, compared to that on the edge or corner sites. This study will deepen the fundamental understanding of the effect of Pd clusters on CO oxidation under reaction conditions.  相似文献   
3.
The structural, electronic, and vibrational properties of two leading representatives of the Zn-based spinel oxides class, normal ZnX2O4 (X = Al, Ga, In) and inverse Zn2MO4 (M = Si, Ge, Sn) crystals, were investigated. In particular, density functional theory (DFT) was combined with different exchange-correlation functionals: B3LYP, HSE06, PBE0, and PBESol. Our calculations showed good agreement with the available experimental data, showing a mean percentage error close to 3% for structural parameters. For the electronic structure, the obtained HSE06 band-gap values overcome previous theoretical results, exhibiting a mean percentage error smaller than 10.0%. In particular, the vibrational properties identify the significant differences between normal and inverse spinel configurations, offering compelling evidence of a structure-property relationship for the investigated materials. Therefore, the combined results confirm that the range-separated HSE06 hybrid functional performs the best in spinel oxides. Despite some points that cannot be directly compared to experimental results, we expect that future experimental work can confirm our predictions, thus opening a new avenue for understanding the structural, electronic, and vibrational properties in spinel oxides.  相似文献   
4.
Fe–Sn–O mixed oxides were synthesized and used as catalysts for Baeyer–Villiger oxidation of cyclohexanone, which showed both high catalytic activity and selectivity. X‐ray powder diffraction and scanning electron microscopy suggested that the Fe–Sn–O catalysts had a tetragonal structure with a grain size of 29.3 nm. An ε‐caprolactone yield as high as 98.8% was obtained in a small‐scale experiment (5 mmol of cyclohexanone). In a scale‐up test (20 mmol of cyclohexanone), the cyclohexanone conversion and ε‐caprolactone yield were 96.7 and 96.5%, respectively. In addition, the catalysts can be reused five times without any major decline in catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
5.
Nowadays, pharmaceutical antibiotics are known as a serious class of pollutants. Therefore, it is important to develop effective methods for removing these pollutants from aqueous media. Different methods were applied for this purpose, and among these methods, chemical reduction by a cheap and eco‐friendly nanocatalyst is the most efficient and simplest method. In this research, based on graphene oxide supported by zero‐valent iron in mono‐, bi‐, and tri‐metallic systems, various nanocomposites were synthesized and used to degrade tetracycline as a model antibiotic from aqueous media. An investigation was carried out on the synergic effect among graphene oxide and the nano zero‐valent iron‐based tri‐metallic system as well as removal efficiencies. It was found that higher degradation efficiency is yielded by graphene oxide supported by Fe/Cu/Ag tri‐metallic system. The maximum synergic effect occurs at an acidic medium. The Brunauer–Emmett–Teller, Fourier transform spectroscopy, scanning electron microscopy‐energy dispersive X‐ray analysis, transmission electron microscopy, and X‐ray diffraction analysis were used to characterize the synthesized nanocomposites, which has successfully proved the loading of nanoscale Fe/Cu/Ag tri‐metallic on a graphene oxide support. The central composite design was used to model and optimize all involved variables affecting antibiotic removal efficiency. The consequences illustrated the optimum condition regarding the removal of 50 ppm of tetracycline, for the nanocomposites dose of 3.0 mg ml?1, the contact time of 30 min, and pH of 2, was achieved using the simplex non‐linear optimization method. Moreover, antibiotic adsorption kinetic models were also investigated. Finally, the tetracycline removal from aqueous media at different concentrations, 25, 50, and 75 ppm, was successful by applying the proposed nanocomposite, and the results showed tetracycline removal efficiencies of above 70%.  相似文献   
6.
Developing clean and sustainable energies as alternatives to fossil fuels is in strong demand within modern society. The oxygen evolution reaction (OER) is the efficiency-limiting process in plenty of key renewable energy systems, such as electrochemical water splitting and rechargeable metal–air batteries. In this regard, ongoing efforts have been devoted to seeking high-performance electrocatalysts for enhanced energy conversion efficiency. Apart from traditional precious-metal-based catalysts, nickel-based compounds are the most promising earth-abundant OER catalysts, attracting ever-increasing interest due to high activity and stability. In this review, the recent progress on nickel-based oxide and (oxy)hydroxide composites for water oxidation catalysis in terms of materials design/synthesis and electrochemical performance is summarized. Some underlying mechanisms to profoundly understand the catalytic active sites are also highlighted. In addition, the future research trends and perspectives on the development of Ni-based OER electrocatalysts are discussed.  相似文献   
7.
《Current Applied Physics》2020,20(8):953-960
Thickness influence on structural, optical and electrical properties of sputtered indium tin oxide (ITO) with thickness ranging from 60 up to 430 nm films has been studied. At the increase of the film thickness crystallinity degree and grain size increased, whereas tensile structural distortion as well as resistivity decreased. It was observed that a microstructure evolution takes place: the initial amorphous layer evolved in polycrystalline phase, with a grain–subgrain surface morphology. Carrier concentration increased at the increase of the film thickness and a general relationship between electrical characteristics and structural distortion has been found. In thinner films larger tensile distortion allowed to include larger amount of interstitial O and/or Sn atoms in the lattice. An appreciable impact of the thickness was also observed on electro-optical properties in terms of changes in energy gap, resistivity and optical absorption. Silicon heterojunction solar cells have been produced and Jsc as high as 33.0 mA/cm2 has been obtained.  相似文献   
8.
Active anodes, especially those consisting of metal mixed oxides (MMOs) containing Ru and/or Ir oxides, have been applied in the treatment of wastewater, especially when chloride ions are present. Their characteristics continuously drive the study of applications of these materials, be they in the degradation of different organic molecules, the preparation of new electrode materials and in the association of various processes to increase pollutant removal. Thus, this brief review aims to present some of the recent advances in the application of active anode materials in environmental electrochemistry. Focussing on the 2018–2020 period, it is possible to note many applied studies, using commercially available materials, covering a wide range of target pollutants. Still other studies aim to modify the catalyst surfaces to increase the mineralization capacity, and the use of these anodes in the production of free chlorine species to mediate indirect organic reduction is observed.  相似文献   
9.
In this work, the ternary hybrid structure VSe2/SWCNTs/rGO is reported for supercapacitor applications. The ternary composite exhibits a high specific capacitance of 450 F g−1 in a symmetric cell configuration, with maximum energy density of 131.4 Wh kg−1 and power density of 27.49 kW kg−1. The ternary hybrid also shows a cyclic stability of 91 % after 5000 cycles. Extensive density functional theory (DFT) simulations on the structure as well as on the electronic properties of the binary hybrid structure VSe2/SWCNTs and the ternary hybrid structure VSe2/SWCNTs/rGO have been carried out. Due to a synergic effect, there are enhanced density of states near the Fermi level and higher quantum capacitance for the hybrid ternary structure compared to VSe2/SWCNTs, leading to higher energy and power density for VSe2/SWCNTs/rGO, supporting our experimental observation. Computed diffusion energy barrier of electrolyte ions (K+) predicts that ions move faster in the ternary structure, providing higher charge storage performance.  相似文献   
10.
The construction of nano-scale hybrid materials with a smart interfacial structure, established by using rare earth oxides and carbon as building blocks, is essential for the development of economical and efficient catalysts for oxygen reduction reactions (ORRs). In this work, hexagonal La2O3 nanocrystals on a nitrogen-doped porous carbon (NPC) derived from crop radish, served as building bricks, are prepared by chemical precipitation and then calcination at elevated temperatures. The obtained La2O3/NPC hybrid exhibits a very high ORR activity with a half-wave potential of 0.90 V, exceeding that of commercial Pt/C (0.83 V). Both DFT theoretical and experimental results have verified that the significantly enhanced catalytic performance is ascribed to the formation of the C−O−La covalent bonds between carbon and La2O3. Through the covalent bonds, electrons can transfer from the carbon to La2O3 and occupy the unfilled eg orbital of the La2O3 phase. This results in the accelerated adsorption of active oxygen and the facilitated desorption of the surface hydroxides (OHad), thereby promoting the ORR over the catalyst.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号